An Interval Analysis Based Study for the Design and the Comparison of Three-Degrees-of-Freedom Parallel Kinematic Machines
نویسندگان
چکیده
This paper addresses an interval analysis based study that is applied to the design and the comparison of three-degrees-of-freedom (3-DoF) parallel kinematic machines. Two design criteria are used: (i) a regular workspace shape and (ii) a kinetostatic performance index that needs to be as homogeneous as possible throughout the workspace. The interval analysis based method takes these two criteria into account; on the basis of prescribed kinetostatic performances, the workspace is analyzed to find the largest regular dextrous workspace enclosed in the Cartesian workspace. An algorithm describing this method is introduced. Two 3-DoF translational parallel mechanisms designed for machining applications are compared using this method. The first machine features three fixed linear joints which are mounted orthogonally and the second features three linear joints which are mounted in parallel. In both cases, the mobile platform moves in the Cartesian x–y–z space with fixed orientation. KEY WORDS—parallel kinematic machine, design, interval analysis, comparison, workspace, transmission factors
منابع مشابه
Design and Kinematic Analysis of a 4-DOF Serial-Parallel Manipulator for a Driving Simulator
This paper presents the kinematic analysis and the development of a 4-degree-of-freedom serial-parallel mechanism for large commercial vehicle driving simulators. The degrees of freedom are selected according to the target maneuvers and the structure of human motion perception organs. Several kinematic properties of parallel part of the mechanism under study are investigated, including the inve...
متن کاملFlexible Foot/Ankle Based on PKM with Force/Torque Sensor for Humanoid Robot
This paper describes the development of a novel humanoid robot foot/ankle based on an orientation Parallel Kinematic Mechanism for intelligent and flexible control. With three identical Universal-Prismatic-Spherical prismatic-actuated limbs and a central Universal-Revolute passive limb, the PKM can perform three degrees of freedom rotation motions. In order to enable the humanoid robot safely t...
متن کاملThe Kinematic Analysis Of Four Degrees Of Freedom For A Medical Robot And Control It By Labview And Arduino Mega2560 (Simulation And Implementation)
ABSRACTThis study presents the kinematic analysis of a four-degree freedom medical robotic arm using the Matlab and the robotic-tool, the arm was designed using a solid work program, As well as details of the control of the real design of this arm using Arduino Mega 2560, The specialist enters the position to be reached by the automatic arm (injection position), Or moving the arm to any p...
متن کاملDexterous Workspace Shape and Size Optimization of Tricept Parallel Manipulator
This work intends to deal with the optimal kinematic synthesis problem of Tricept parallel manipulator. Observing that cuboid workspaces are desirable for most machines, we use the concept of effective inscribed cuboid workspace, which reflects requirements on the workspace shape, volume and quality, simultaneously. The effectiveness of a workspace is characterized by the dexterity of the manip...
متن کاملApplication of Wavelet Neural Network in Forward Kinematics Solution of 6-RSU Co-axial Parallel Mechanism Based on Final Prediction Error
Application of artificial neural network (ANN) in forward kinematic solution (FKS) of a novel co-axial parallel mechanism with six degrees of freedom (6-DOF) is addressed in Current work. The mechanism is known as six revolute-spherical-universal (RSU) and constructed by 6-RSU co-axial kinematic chains in parallel form. First, applying geometrical analysis and vectorial principles the kinematic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- I. J. Robotics Res.
دوره 23 شماره
صفحات -
تاریخ انتشار 2004